Decomposition numbers for unipotent blocks with small $\mathfrak{sl}_2$-weight in finite classical groups - Institut de Mathématiques de Marseille 2014-
Pré-Publication, Document De Travail Année : 2023

Decomposition numbers for unipotent blocks with small $\mathfrak{sl}_2$-weight in finite classical groups

Emily Norton
  • Fonction : Auteur
  • PersonId : 1442190

Résumé

We show that parabolic Kazhdan-Lusztig polynomials of type $A$ compute the decomposition numbers in certain Harish-Chandra series of unipotent characters of finite groups of Lie types $B$, $C$ and $D$ over a field of non-defining characteristic $\ell$. Here, $\ell$ is a ``unitary prime" -- the case that remains open in general. The bipartitions labeling the characters in these series are small with respect to $d$, the order of $q$ mod $\ell$, although they occur in blocks of arbitrarily high defect. Our main technical tool is the categorical action of an affine Lie algebra on the category of unipotent representations, which identifies the branching graph for Harish-Chandra induction with the $\widehat{\mathfrak{sl}}_d$-crystal on a sum of level $2$ Fock spaces. Further key combinatorics has been adapted from Brundan and Stroppel's work on Khovanov arc algebras to obtain the closed formula for the decomposition numbers in a $d$-small Harish-Chandra series.
Fichier principal
Vignette du fichier
2311.16939v1.pdf (302.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04786171 , version 1 (15-11-2024)

Identifiants

Citer

Olivier Dudas, Emily Norton. Decomposition numbers for unipotent blocks with small $\mathfrak{sl}_2$-weight in finite classical groups. 2023. ⟨hal-04786171⟩
2 Consultations
2 Téléchargements

Altmetric

Partager

More