Stochastic simulation of clinical pathways from raw health databases - CIS / I4S : Ingénierie des Systèmes de Soins et des Services de Santé Access content directly
Conference Papers Year : 2018

Stochastic simulation of clinical pathways from raw health databases

Vincent Augusto
Xiaolan Xie
Baptiste Jouaneton
  • Function : Author
Ludovic Lamarsalle
  • Function : Author

Abstract

This paper presents a method to automatically create stochastic simulation models of clinical pathways from raw databases. We introduce an automatic procedure to convert a process model, discovered with process mining, into an actionable simulation model. The concept of state charts is used and enriched to incorporate the distinctive features of healthcare processes into the model. The clinical pathway model is used to simulate new patients' sequence of events. The resulting model is validated by comparing key performances indicators with historical data. Finally, we use the model to perform an automatically setup sensitivity analysis. The whole process is automated and can be used with any input data.
Fichier principal
Vignette du fichier
prodel2017.pdf (350.66 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01860734 , version 1 (13-12-2019)

Identifiers

Cite

Martin Prodel, Vincent Augusto, Xiaolan Xie, Baptiste Jouaneton, Ludovic Lamarsalle. Stochastic simulation of clinical pathways from raw health databases. 2017 13th IEEE Conference on Automation Science and Engineering (CASE 2017), Aug 2017, Xi'an, China. ⟨10.1109/COASE.2017.8256167⟩. ⟨hal-01860734⟩
70 View
131 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More