Non-Linear Spectral Unmixing for the Estimation of the Distribution of Graphene Oxide Deposition on 3D Printed Composites - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (<b>anciennement Cemagref</b>)
Article Dans Une Revue Applied Sciences Année : 2020

Non-Linear Spectral Unmixing for the Estimation of the Distribution of Graphene Oxide Deposition on 3D Printed Composites

Résumé

Hyperspectral analysis is a well-established technique that can be suitably implemented in several application fields, including materials science. This approach allows us to deal with data samples containing spatial and spectral information at very high resolution, thus enabling us to evaluate materials properties at a nanoscale level. As a proof of concept, hyperspectral imaging was here considered to investigate 3D printed polymer matrix composites, considering graphene oxide (GO) as a nanofiller. Commercial polycaprolactone and polylactic acid filaments were firstly treated with GO to be then printed into testing specimens. Raman analysis was performed to assess the GO distribution on samples surface by mapping different regions of interest and the collected data were the input of a custom-made algorithm for hyperspectral image analysis, tailored to detect the GO signature. Findings showed a valuable matching to Raman maps and were also characterized by the positive feature of avoiding to set specific conditions to perform the investigation as GO Raman distribution was carried out by fixing the wavenumber at 1580 cm−1, which is representative of the G band of the nanofiller. This occurrence might lead to an uneven intensity representation related to possible peak shifts which can bias the acquired results. Differently, hyperspectral imaging needs a minimal set of data input, i.e., the spectral signatures of neat materials, to directly identify the searched nanomaterial. More in-depth investigations need to be performed to fully validate the proposed approach, but the here presented results already show the potential and versatility of hyperspectral analysis in the materials science field. View Full-Text
Fichier principal
Vignette du fichier
applsci-10-07792.pdf (3.17 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03142180 , version 1 (10-11-2024)

Licence

Identifiants

Citer

Giorgio Licciardi, Costantino del Gaudio, Jocelyn Chanussot. Non-Linear Spectral Unmixing for the Estimation of the Distribution of Graphene Oxide Deposition on 3D Printed Composites. Applied Sciences, 2020, 10 (21), pp.7792. ⟨10.3390/app10217792⟩. ⟨hal-03142180⟩
53 Consultations
0 Téléchargements

Altmetric

Partager

More