Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization - Laboratoire de Conception et d'Intégration des Systèmes
Article Dans Une Revue Mathematics of Control, Signals, and Systems Année : 2024

Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization

Résumé

This paper is dedicated to structure-preserving spatial discretization of shallow water dynamics. First, a port-Hamiltonian formulation is provided for the two-dimensional rotational shallow water equations with viscous damping. Both tangential and normal boundary port variables are introduced. Then, the corresponding weak form is derived and a partitioned finite element method is applied to obtain a finite-dimensional continuous-time port-Hamiltonian approximation. Four simulation scenarios are investigated to illustrate the approach and show its effectiveness.
Fichier principal
Vignette du fichier
DissipativeSWE_MCSS accepted version.pdf (59.95 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04835390 , version 1 (13-12-2024)

Licence

Identifiants

Citer

Flávio Luiz Cardoso-Ribeiro, Ghislain Haine, Laurent Lefèvre, Denis Matignon. Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization. Mathematics of Control, Signals, and Systems, 2024, ⟨10.1007/s00498-024-00404-6⟩. ⟨hal-04835390⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More