
HAL Id: hprints-00758536
https://hal-hprints.archives-ouvertes.fr/hprints-00758536v1

Submitted on 28 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Python Library for Historical Comparative Linguistics
Steven Moran, Johann-Mattis List

To cite this version:
Steven Moran, Johann-Mattis List. A Python Library for Historical Comparative Linguistics. Eu-
roscipy 2012, Aug 2012, Brussels, Belgium. �hprints-00758536�

https://hal-hprints.archives-ouvertes.fr/hprints-00758536v1
https://hal.archives-ouvertes.fr

.

.. ..

.

.

A Python Library for Historical Comparative
Linguistics

Steven Moran1 & Johann-Mattis List2

1Research Unit Quantitative Language Comparison
Ludwig-Maximilians University Munich

steve.moran@lmu.de
2Institute for Romance Languages and Philology

Heinrich Heine University Düsseldorf
listm@phil.hhu.de

August 26, 2012

1 / 33

steve.moran@lmu.de
listm@phil.hhu.de

Talk Map

.. .1 Language History

.. .2 Traditional Language Comparison
Workflow
Cognates
Similarity

.. .3 Quantitative Language Comparison
Workflow
Issues
QLC and LingPy

.. .4 Examples
Preprocessing
Alignments

.. .5 Conclusion

2 / 33

Language History

pater

father

1

padre

Vater

1

Historical Linguistics

3 / 33

Language History

Language History

Similar to species in biology, languages also evolve. Words are
lost, new words are gained, and also the pronunciation of all words
changes slightly from day to day.
During its history, a language may split into two or more
descendant languages when the speakers separate and their
languages keep on changing independently.
To uncover, how the languages changed into their current shape is
one of the major tasks of historical linguistics.

4 / 33

Language History

Uncovering Language History

There are only a few languages whose history is directly reflected
in written sources.
For the majority of the 6909 languages spoken today (Lewis 2009),
we would not know anything about their past if we didn’t have
methods to infer their history.
In order to uncover language history, the languages spoken today
are manually searched for traces of common origin.
Finding these traces, however, is an extremely complicated task: it
took scholars more than 50 years to prove that Armenian is an
Indo-European language...

5 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n -

* Proto-Germanic t a n d

English t ʊː θ -

** Proto-Indo-European d o n t

Italian d ɛ n t e

* Proto-Romance d e n t

French d ɑ̃ - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n -

* Proto-Germanic t a n d

English t ʊː θ -

** Proto-Indo-European d o n t

Italian d ɛ n t e

* Proto-Romance d e n t

French d ɑ̃ - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n - -

* Proto-Germanic t a n d

English t ʊː - θ -

** Proto-Indo-European d o n t

Italian d ɛ n t e

* Proto-Romance d e n t

French d ɑ̃ - - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n - -

Proto-Germanic t a n θ -

English t ʊː - θ -

** Proto-Indo-European d o n t

Italian d ɛ n t e

Proto-Romance d e n t e

French d ɑ̃ - - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n -

Proto-Germanic t a n θ -

English t ʊː - θ

** Proto-Indo-European d o n t

Italian d ɛ n t e

Proto-Romance d e n t e

French d ɑ̃ - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n -

Proto-Germanic t a n θ -

English t ʊː - θ

Proto-Indo-European d e n t -

Italian d ɛ n t ə

Proto-Romance d e n t e

French d ɑ̃ - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n -

* Proto-Germanic t a n d

English t ʊː - θ

Proto-Indo-European d e n t

Italian d ɛ n t ə

* Proto-Romance d e n t

French d ɑ̃ - -

1

6 / 33

Language History

Constructing Historical Scenarios

German ʦ aː n

Proto-Germanic t a n θ

English t ʊː θ

Proto-Indo-European d e n t

Italian d ɛ n t e

Proto-Romance d e n t e

French d ɑ̃

German ʦ aː n

Proto-Germanic t a n θ

English t ʊː θ

Proto-Indo-European d e n t

Italian d ɛ n t e

Proto-Romance d e n t e

French d ɑ̃

16 / 33

Traditional Language Comparison

Traditional Language Comparison

7 / 33

Traditional Language Comparison Workflow

Slide 1 – Workflow

Spreadsheet

Speaker
Language A

Linguist(s)

how do you say
"tree"? tímɛ́

Wordlists

tree tímɛ́
root wélú
stem kùgɔl̀u
...

Uncovering language
history

Speaker
Language B

how do you say
"tree"?

tìmá:

Manual
inspection

& comparison

A B C D E

8 / 33

Traditional Language Comparison Cognates

Cognate Detection

The most crucial part of language comparison is the detection of
cognates.
Cognates are words from different languages that go back to a
common ancestor word (compare German Hand and English
hand).
Cognate words exhibit a specific kind of similarity which does not
necessarily show up in form of surface resemblances of the
sounds the words are made of, but rather in structural similarities
of cognate words.
This kind of similarity is not easy to detect: German Zahn and
English tooth, for example, are cognate, while Greek mati and
Malay mata are not...

9 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l l = l
pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l

l = l
pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l

l = l
pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l l = l

pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l l = l
pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Traditional Language Comparison Similarity

Sound Correspondences

Meaning Italian French
“square” pjaʦːa plas
“feather” pjuma plym
“flat” pjano plã

Meaning Italian French
“tear” lakrima laʀm
“tongue” liŋgwa lɑ̃ɡ
“moon” luna lyn

j = l l = l
pj = pl , l = l

Detecting regular sound correspondences can be compared
to the task of finding a cipher that relates a source to a ci-
pher text. The only problem is: It is much harder than that,
since source and cipher text are badly maintained...

10 / 33

Quantitative Language Comparison

h
j

-
ä

r
t

a
-

h
-

e
-

r
z

-
-

h
-

e
a

r
t

-
-

c
-

-
o

r
d

i
s

hjärta

he
rz

heartcordis

Quantitative Language Comparison

11 / 33

Quantitative Language Comparison Workflow

Workflow

Spreadsheet

Speaker
Language A

Linguist(s)

how do you say
"tree"? tímɛ́

Wordlists

tree tímɛ́
root wélú
stem kùgɔl̀u
...

Input for
statistical
methods

Speaker
Language B

how do you say
"tree"?

tìmá:

parse

12 / 33

Quantitative Language Comparison Issues

Biological Parallels

In both biology and historical linguistics ...
sequences, i.e. ordered collections drawn from a fixed set of
characters, constitute the basic unit of replication.
sequence comparison is of great importance.
phylogenetic trees are a basic classification scheme.

13 / 33

Quantitative Language Comparison Issues

Biological Parallels – Caveats
Problems in historical linguistics and biology are similar, but ...

the amino acid alphabet for proteins has only 20 characters, while
there are more than 2000 different sounds in the languages of the
world...
biological sequences are very long while linguistic ones are very
short...
in biology, the alphabet remains stable during evolution, while it
changes constantly in language history...

Biological algorithms were designed for long sequences
drawn from small alphabets. In quantitative language com-
parison we need algorithms for short sequences drawn from
large alphabets. While biologists can model their sequences
in ASCII characters, linguists cannot do without Unicode!

14 / 33

Quantitative Language Comparison Issues

Biological Parallels – Caveats
Problems in historical linguistics and biology are similar, but ...

the amino acid alphabet for proteins has only 20 characters, while
there are more than 2000 different sounds in the languages of the
world...
biological sequences are very long while linguistic ones are very
short...
in biology, the alphabet remains stable during evolution, while it
changes constantly in language history...

Biological algorithms were designed for long sequences
drawn from small alphabets. In quantitative language com-
parison we need algorithms for short sequences drawn from
large alphabets. While biologists can model their sequences
in ASCII characters, linguists cannot do without Unicode!

14 / 33

Quantitative Language Comparison Issues

Cumulative number of segment types vs languages in
random order

0 200 400 600 800 1000

0
50
0

10
00

15
00

Languages in random order

Cu
mu
la
ti
ve
 n
um
be
r
of
 p
ho
ne
s

15 / 33

Quantitative Language Comparison QLC and LingPy

QLC

QLC is a Python library for undertaking quantitative language
comparison.
QLC focuses on parsing linguistic data, orthographic tokenization
and quantitative methods for language comparison.
QLC uses the Python libraries “regex” (Matthew Barnett), SciPy,
NumPy and LingPy.
https://github.com/pbouda/qlc

16 / 33

https://github.com/pbouda/qlc

Quantitative Language Comparison QLC and LingPy

QLC

Pre-processing QLC Python Library

some data
source

output
format /

QLC input
format

corpus
reader

orthography
profile

"expert"
annotated

tokenzier

orthography
parser

Matrices,
ngrams

matrix
paper

resources

parse

digital
resources

digitization

IE

QLC parsed
format

lingpy
output
format

translation
graph

initial
orthography

profile /
unigram
model

17 / 33

Quantitative Language Comparison QLC and LingPy

LingPy

LingPy is a Python library for automatic tasks in historical
linguistics.
LingPy mainly concentrates on statistical analyses of languages,
providing methods for

sequence modelling,
pairwise and multiple sequence alignment,
automatic cognate detection, and
plotting routines.

LingPy makes use of NumPy and NetworkX. Time-consuming
tasks are implemented in C++ (integrated using Boos) and Cython.
http://lingulist.de/lingpy

18 / 33

http://lingulist.de/lingpy

Examples

*
*

*
*

*
*

*

*

* *
*

*
*v o l - d e m o r t

v - l a d i m i r -

v a l - d e m a r -

1

Examples

19 / 33

Examples Preprocessing

Orthography profile

A string must be tokenized into Unicode code points
Tokenization is required because sequences of code points can
differ in their visual and logical orders
Unicode normalization reorders code points into a canonical order
Combining characters and space modifying letters are joined
An orthography profile specifies graphemic sequences, e.g. <s> &
<h> vs <sh> in <mis.hap> & <mish.mash>

20 / 33

Examples Preprocessing

Computational challenges

Adherence to Unicode IPA:
g/ɡ, !/! ...
a/ɑ
p/p

Visual versus logical Unicode character ordering (homoglyphs)

ã̰ ã̰
U+0061 + U+0330 + U+0303 U+0061 + U+0303 + U+0330
latin small letter a + latin small letter a +
combining tilde below + combining tilde +
combining tilde combining tilde below

21 / 33

Examples Preprocessing

Computational orthographic levels

original string: tsʰó̰̃shi

code points (10) t s h o ˜ ̰ ́ s h i
characters (6) t sh ó̰̃ s h i
graphemes (4) tsh ó̰̃ sh i

22 / 33

Examples Preprocessing

Computational orthographic levels

23 / 33

Examples Preprocessing

Orthography profile example: Leach 1969

leach1969 orthography profile (interpretation by QLC)
-, ,
a, a,
á, a,
an, ã,
án, ã,
e, ɛ, according to Aschmann extremely rare
é, ɛ, according to Aschmann extremely rare
en, ɛ̃, according to Aschmann does not exist
én, ɛ̃, according to Aschmann does not exist
c, k,
ch, ʧ,
d, d, only in Spanish loan words
..j, h, typo

24 / 33

Examples Preprocessing

Orthography profile example: Leach 1969

s, s,
sh, ʃ, according to Aschmann it never occurs word initially
t, t,
ts, ts,
ty, tj,
y, ʑ, not clear which sound it is, it never occurs word initially
z, z, only in Spanish loan words

rules
([aǀáǀeǀéǀiǀíǀoǀóǀuǀú])(n)(\s)([aǀáǀeǀéǀiǀíǀoǀóǀuǀú]), \1 \2 \4

25 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

k g p b

ʧ ʤ f v

t d ʃ ʒ

θ ð s z

1

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

k g p b

ʧ ʤ f v

t d ʃ ʒ

θ ð s z

1

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

k g p b

ʧ ʤ f v

t d ʃ ʒ

θ ð s z

1

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

K

T

P

S

1

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Preprocessing

Sound Classes

.Sound Classes..

.. ..

.

.

Sounds which often occur in
correspondence relations in
genetically related languages can
be clustered into classes (types). It
is assumed “that phonetic
correspondences inside a ‘type’ are
more regular than those between
different ‘types’” (Dolgopolsky 1986:
35).

K

T

P

S

1

With the help of sound classes the large number of speech
sounds can be reduced to a manageable size comparable
to the number of characters used in biological algorithms.

26 / 33

Examples Alignments

Alignment Analyses

Definition 1
An alignment of n sequences is an n-row matrix in which
all sequences are aranged in such a way that all matching
and mismatching segments occur in the same column, while
empty cells, resulting from emptymatches, are filled with gap
symbols. (cf. Kruskal 1983)

For reasons of computational complexity, the alignment
problem is often split into a pairwise and amultiple alignment
problem. Multiple sequence alignments are usually com-
puted on the basis of previously computed pairwise align-
ments.

27 / 33

Examples Alignments

Alignment Analyses

Definition 1
An alignment of n sequences is an n-row matrix in which
all sequences are aranged in such a way that all matching
and mismatching segments occur in the same column, while
empty cells, resulting from emptymatches, are filled with gap
symbols. (cf. Kruskal 1983)

For reasons of computational complexity, the alignment
problem is often split into a pairwise and amultiple alignment
problem. Multiple sequence alignments are usually com-
puted on the basis of previously computed pairwise align-
ments.

27 / 33

Examples Alignments

Alignment Analyses

0 H H H H H 0

0 H H H H 0

28 / 33

Examples Alignments

Alignment Analyses

0 H H H H H 0

0 H H H H 0

28 / 33

Examples Alignments

Alignment Analyses

0 H H H H H 0

0 H H H H H 0

28 / 33

Examples Alignments

Phonetic Alignment

INPUT
ʧɪlɐvʲɛk
ʧovɛk

1

29 / 33

Examples Alignments

Phonetic Alignment

INPUT
ʧɪlɐvʲɛk
ʧovɛk

TOKENIZATION
ʧ, ɪ, l, ɐ, vʲ, ɛ, k
ʧ, o, v, ɛ, k

1

29 / 33

Examples Alignments

Phonetic Alignment

INPUT
ʧɪlɐvʲɛk
ʧovɛk

TOKENIZATION
ʧ, ɪ, l, ɐ, vʲ, ɛ, k
ʧ, o, v, ɛ, k

CONVERSION
CILAWEK
COWEK

1

29 / 33

Examples Alignments

Phonetic Alignment

INPUT
ʧɪlɐvʲɛk
ʧovɛk

TOKENIZATION
ʧ, ɪ, l, ɐ, vʲ, ɛ, k
ʧ, o, v, ɛ, k

CONVERSION
CILAWEK
COWEK

ALIGNMENT
C I L A W E K
C - - O W E K

1

29 / 33

Examples Alignments

Phonetic Alignment

INPUT
ʧɪlɐvʲɛk
ʧovɛk

TOKENIZATION
ʧ, ɪ, l, ɐ, vʲ, ɛ, k
ʧ, o, v, ɛ, k

CONVERSION
CILAWEK
COWEK

ALIGNMENT
C I L A W E K
C - - O W E K

OUTPUT
ʧ ɪ l ɐ vʲ ɛ k
ʧ - - o v ɛ k

1

29 / 33

Examples Alignments

Example

>>> from lingpy import *

>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')

>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)

ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹

>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()

>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test

k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³

>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Examples Alignments

Example

>>> from lingpy import *
>>> test = Multiple('evobench_91')
>>> print ','.join(test.seqs)
ku²¹,kɤ²¹,ku²¹,ku²¹,gu¹²,ku²¹,ku²¹
>>> test.lib_align()
>>> print test
k - u ²¹ - - -
k - ɤ ²¹ - - -
k - u ²¹ - - -
k - u ²¹ - - -
g - u ¹² - - -
k w o ²¹ - - -
q - ẽ ⁵⁵ k ɤ ³³
>>> print ','.join(test.classes)
KY3,KE3,KY3,KY3,KY2,KY3,KY3

30 / 33

Conclusion

Why not use already existing tools?
Well, because

for a majority of the sequence comparison algorithms used in
LingPy there is no proper Python implementation available, thus

PyCogent (Knight et al. 2007) and BioPython (Cock et al. 2009)
offer only implementations of the most basic algorithms
(Needleman-Wunsch, Smith-Waterman) for pairwise alignment,
there are no Python implementations of algorithms for multiple
sequence alignment that we would know of, and
neither the basic progressive strategies (Thompson et al. 1994) for
multiple sequence alignment, nor the recent consistency-based
algorithms (Notredame et al. 2000) that are implemented in LingPy
have made their way into any of these packages.

most algorithms that have been developed for bioinformatics
cannot be directly used to compare linguistic sequences, but have
to be adapted to conform to the specific needs of historical
linguistics (see List 2012 and the LingPy documentation for
details).

31 / 33

Conclusion

Open ended language comparison problems

How to distinguish between words that are similar because they
are historically related and words that are similar by chance?

Greek théos’ [θɛɔs] “god” and Spanish dios [diɔs] “god” are similar,
yet they are not historically related, going back to different ancestor
words.

How to distinguish between words that have a common origin and
words that have been borrowed?

English has borrowed more than 40% of its lexicon, mostly from
Romance languages.

How can we standardize the way we represent languages in our
programs, how can we effectively pool our strengths in uncovering
the unknown history of the languages of the world?

Standardization plays an important role in biology. In linguistics, it
has been ignored so far.

32 / 33

Conclusion

Many thanks to...

The organizers, participants and sponsors of EuroSciPy 2012!
QLCers: Michael Cysouw, Jelena Prokić and Peter Bouda.
And the European Research Council.

33 / 33

Conclusion

“Bag of symbols” approach

Alignment of sounds in lexical items
Ignore linear structure of words (mostly)
Use parallel wordlist to estimate co-occurrences of n-grams
N-grams that have a high probability of co-occurrence in parallel
meaning are interested for historical linguistics

34 / 33

Conclusion

35 / 33

Conclusion

36 / 33

Conclusion

37 / 33

Conclusion

Bigram matching

Bora “two”: mínjéékhɯɯ
Muinane “two”: míínokɨ

38 / 33

Conclusion

39 / 33

Conclusion

40 / 33

Conclusion

Languages per language family

41 / 33

Conclusion

Distribution of languages by speaker population

Languages Speakers
Population range Count Percent Count Percent
100,000,000 to 999,999,999 8 0.1 2.30 B 38.7
10,000,000 to 99,999,999 77 1.1 2.34 B 39.3
1,000,000 to 9,999,999 304 4.4 952 M 15.9
100,000 to 999,999 895 13.0 283 M 4.7
10,000 to 99,999 1,824 26.4 61 M 1.01
1,000 to 9,999 2,014 29.2 7.7 M 0.13
100 to 999 1,038 15.0 461 K 0.007
10 to 99 339 4.9 12.5 K 0.0002
1 to 9 133 1.9 521 0.00001
Unknown 277 4.0
Totals 6,909 6 B

Source: Ethnologue 16 (Lewis 2009)
42 / 33

Conclusion

Major languages geographically

43 / 33

	Language History
	Traditional Language Comparison
	Workflow
	Cognates
	Similarity

	Quantitative Language Comparison
	Workflow
	Issues
	QLC and LingPy

	Examples
	Preprocessing
	Alignments

	Conclusion

