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Statistical hypothesis testing is commonly used to assess the fit of data to 

the Rasch models. Such tests of fit are problematical as they are sensitive 

to sample size and the number of parameters in the model. Furthermore, 

the null distributions of the statistical test may deviate from a distribution 

with a known parametric shape. Accordingly, in this study, a number of 

descriptive fit statistics for the Rasch model, based on the tenets of 

Andersen’s LR test and Fischer-Scheiblechner’s S test, are suggested and 

compared using simulation studies. The results showed that some of the 

measures were sensitive to sample size while some were insensitive to 

model violations. Andersen’s χ2/df measure was found to be the best 

measure of fit. 

 

The Rasch model (Rasch 1960/1980) has become a standard 

measurement model for the analysis and validation of educational and 

psychological tests and for the purpose of scaling examinees (Embretson, 

2000; Hambleton, 1991; Rupp, 2006). This is due to the appealing 

properties of the model which are generally referred to as objective 

measurement (Karabatsos, 2000). These properties include parameter 

separability, existence of a common interval scale for both persons and 

items, unidimensionality of measurement, and existence of a sufficient 

statistic to estimate person and item parameters independently of each 

other (Baghaei, 2009; Fischer, 2006). Nevertheless, these features are not 

achieved automatically upon subjecting raw data to the Rasch model. The 

degree to which these essential properties of measurement are attained 

depends on the fit of data to the Rasch model.  

The attractive properties of the Rasch model and the assumptions of 

the model—that is, unidimensionality, parallel item characteristic curves, 
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and stochastic independence—allow for elegant methods of testing the 

model. Over the years, numerous global and local statistical tests have 

been proposed to check the conformity of data to the Rasch model 

principles (see Maydeu-Olivares, 2013). 

 Most of the fit tests available for the Rasch model rely on the 

principles of statistical hypothesis testing based on the null hypothesis in 

which the Rasch model holds, and an alternative hypothesis in which the 

Rasch model does not hold. The most widely used methods for testing 

the Rasch model are Andersen’s likelihood ratio test (LR test) (Andersen, 

1973), Martin-Löf’s test (Martin-Löf, 1973), Q1 test (Van den 

Wollenberg, 1982), and R1 test (Glas, 1988). However, statistical tests for 

the Rasch model have certain disadvantages that affect their utility and 

reliability as model checks. The most serious problem of statistical 

significance testing is the sensitivity to sample size and the number of 

items. For instance, statistical tests might lead to statistically significant 

results even under practically negligible deviation from the Rasch model 

when sample size is large (high statistical power) or statistically 

nonsignificant results even under large deviations from the Rasch model 

when samples are small and thus have low statistical power (Gustafsson, 

1980). Thus, sample size determination given type-I-risk α, type-II-risk 

β, and model deviation δ for testing the Rasch model is needed 

(Kubinger, 2009). Nevertheless, only a few methods for sample size 

determination under restrictive assumptions are available (Draxler, 2010; 

Kubinger, 2011), while most of the statistical tests for the Rasch model 

do not permit sample size determination. Lastly, statistical tests for the 

Rasch model test perfect fit while an actual data set never fits a 

mathematical model perfectly.   

Due to the above-mentioned limitations of statistical testing, 

descriptive fit statistics are used to provide a measure for the conformity 

of data to the Rasch model, which can be either global or local. Local fit 

statistics, such as the residual-based infit and outfit values (Wright, 

1979), provide a measure for the conformity of portions of the data on 

both items and persons to the Rasch model specifications. Global 

descriptive fit statistics, i.e., measures for the overall conformity of data 

to the Rasch model, appear to be rarely used in practice. 

Consequently, the goal of the present study is to develop global 

descriptive fit statistics for checking whether the Rasch model holds. 

Such measures are commonly used in structural equation modeling 

literature (see West, 2012) but are not used in IRT circles. A number of 

statistics are proposed and evaluated under different conditions of 

varying test length and sample size using a simulation study. The 

proposed statistics are based on the rationale of two statistical tests for 

the Rasch model, which are reviewed below. 
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Andersen’s likelihood ratio test 

The rationale behind Andersen’s LR test (Andersen, 1973) is the 

invariance property of the Rasch model: if the Rasch model holds, 

equivalent item parameter estimates should be obtained from different 

subsamples of the data within sampling error. For example, item 

calibrations based on low scorers and high scorers should yield 

approximately the same parameter estimates. In addition, Andersen 

(1973) showed that if items have substantially different discriminations 

they would have different difficulty estimates. Therefore, the approach is 

sensitive to the violation of parallel item characteristic curves (ICC). The 

power of the LR test against the property of parallel ICC’s was 

confirmed by Van den Wollenberg (1979). Likewise, Gustafsson (1980) 

demonstrated that the LR test has power against 2PL and 3PL models. 

Nevertheless, Suarez-Falcon and Glas (Suarez-Falcon, 2003) showed that 

the test has low power with respect to multidimensionality of the data. 

Accordingly, to conduct Andersen’s LR test (Andersen, 1973), the 

sample is divided into g score-level subsamples and the conditional 

likelihood function for each subsample and the entire sample is 

computed. If the Rasch model holds, the likelihood of the complete data 

should be approximated by the product of the likelihoods of the 

subsamples (Suarez-Falcon, 2003). Andersen (1973) showed that -2 

times logarithm  of the difference between the maximum likelihood (ML) 

of the whole sample and sum of likelihoods of the subsamples is 

asymptotically chi-square distributed with (g-1) (k-1) degrees of freedom, 

where g and k are the number of score groups and the number of items, 

respectively.  

 

Fischer-Scheiblechner’s S test 

In Fischer-Scheiblechner’s (Fischer & Scheiblechner, 1970) 

approach, the sample is divided into two subsamples and the item 

parameters are estimated in each of the subsamples. The difference 

between the item parameters across the subsamples is tested with the 

usual z-test of difference: 

 

 

 

where  and  are the difficulty estimates of item i in subsamples 1 

and 2, and and are variances of the estimates of  and . Si 
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is an approximate standard normal deviate and  is approximately chi-

squared distributed. Overall, S statistic is calculated by summing up chi-

squared terms, i.e.,  values for all item parameter pairs. According to 

Fischer and Scheiblechner (1970), S is chi-squared distributed with k-1 

degrees of freedom, k being the number of items. However, van den 

Wollenberg (1979) states that the summation of  values is possible 

only if chi-squared terms are independent. This condition is violated as 

the covariance between item parameters must be negative due to the 

norming condition of item parameters in each subsample. Since the 

covariance matrix does not enter the equation of S, it cannot be chi-

squared distributed with k or k-1 degrees of freedom.   

 

Present study 

The goal of the present study is to develop global fit statistics for 

checking the dichotomous Rasch model. In general, for descriptive fit 

statistics to be useful they should meet several conditions. First, in the 

absence of differential item functioning (DIF),- i.e., where items have 

different parameter estimates based on different subsamples of the same 

location on the latent trait- the fit statistic should be near a constant 

value. Second, in the presence of DIF, the fit statistic should quantify the 

extent of DIF. In particular, it should become larger depending on the 

number of DIF items and the magnitude of DIF. Lastly, when 

quantifying DIF, the fit statistic should not be affected by sample size. 

More specifically, in the absence of DIF, the fit measure should be near a 

constant value independent of the sample size while, in the presence of 

DIF, the value should only quantify DIF without being affected by 

sample size. In order to develop fit measures for testing the Rasch model, 

the study investigated properties of various measures to evaluate if those 

requirements are fulfilled.  

 

METHOD  

Proposed fit measures for testing the Rasch model 

We propose some descriptive fit measures based on the principle of 

stability of item parameter across subsamples, which will then be 

examined with a simulation study.  

Root-mean-square deviation (RMSD).  RMSD is the square root of 

the mean square difference between item parameters estimated in two 

subgroups after bringing them onto a common scale:  

 



     Baghaei, Yanagida, & Heene   RASCH MODEL FIT   159 

where   is the estimated item parameter in the first subgroup (e.g., 

examinees with low scores),  is the estimated item parameter in the 

second subgroup (e.g., examinees with high scores), and  is the number 

of items. Following the rationale of the Andersen’s LR test, if the Rasch 

model holds in the population, equivalent item parameter estimates 

should be obtained, apart from sampling error, which means the RMSD 

should be close to zero.  

Standardized root-mean-square deviation (SRMSD).  SRMSD is the 

RMSD divided by the pooled standard deviation (SD pooled) of item 

parameters for both subgroups:  

 
The pooled standard deviation is given by: 

 
 

Likewise, if the Rasch model holds, the RMSD should be near zero. 

Normalized root-mean-square deviation (NRMSD).  The NRMSD is 

the RMSD divided by the range of estimated item parameters in both 

subgroups: 

 
where  is the maximum of the item parameters in both 

subgroups and  is the minimum of the item parameters in 

both subgroups. Again, if the Rasch model holds, the SRMSD should be 

near zero. 

Chi square to degree of freedom ratio X2
/df.  The chi square to degree 

of freedom ratio is commonly applied in the framework of structural 

equation modeling (SEM) to assess model fit (see West, 2012). The 

rationale is that the expected value of the X2
 for a correct model equals 

the degree of freedom. Thus, if the Rasch model holds, X2
/df  should be 

close to one. The current study investigated X2
/df for both the Andersen’s 

LR test and the Fischer and Scheiblechner’s S statistic. 
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Root mean square error of approximation (RMSEA)  The RMSEA 

(Steiger, 1980) is a widely used fit measure in structural equation 

modeling: 

 
When the chi-square is less than the degree of freedom, the RMSEA 

is set to zero. In the current study, the RMSEA based on both the 

Andersen’s LR test and the Fischer and Scheiblechner’s S statistic is 

investigated. If the Rasch model holds, the RMSEA should be near zero. 

 

Simulation study    

In order to investigate the properties of the proposed measures, 

simulations based on two general conditions were carried out: (1) without 

differential item functioning or null hypothesis conditions and (2) with 

differential item functioning or alternative hypothesis conditions. In both 

conditions, data were simulated with n = 100, 200, 300, 400, 500, 600, 

700, 800, 900, and 1,000 examinees in combination with k = 10, 20, 30, 

40, and 50 items. In the alternative hypothesis conditions, data were 

simulated with eight DIF items. The magnitude of DIF was  0.6 or 1/10 

of the range of the simulated item parameters.  

The item parameters were set as equally spaced within the interval [-

3, 3], which corresponds to the whole spectrum of item difficulties that 

arise in practice. Meanwhile, the person parameters of examinees were 

randomly drawn from N (0, 1.5), again corresponding to the values of 

person parameters that are likely to occur in practice. Moreover, 

simulations were conducted in R (R Core Team, 2015) using the eRm 

package (Mair, 2015). 

In order to compute the proposed fit statistics, data sets were divided 

into high scorers and low scorers, based on the mean of the raw scores. 

Next, the item parameters were estimated separately in the two 

subsamples. Lastly, the item parameters where brought on to a common 

scale. 

In each condition, the fit statistic in question was computed for 

10,000 replications. In addition, for each fit statistic, we computed mean, 

standard deviation as well as minimum and maximum over all 

replications. 

RESULTS 

Null hypothesis condition 

First, the null hypothesis condition was investigated, that is, those 

without differential item functioning. As for the RMSD, results revealed 

that this fit statistic is highly dependent on sample size; the larger the 

sample size, the lower the fit statistic. For example, while the mean 
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RMSD is 0.61 with N = 100 examinees and k = 10 items, the mean 

RMSD drops to 0.18 with N = 1,000. Since the SRMSD and the NRMSD 

are based on the RMSD, these measures to a certain extent are also 

dependent on the sample size. For instance, while the mean SRMSD is 

1.47 with N = 100 examinees and k = 10 items, it drops to 0.41 with N = 

1,000 examinees. Likewise, when the mean NRMSD is 0.09 with N = 

100 examinees with k = 10 items, it drops to 0.03 with N = 1,000 

examinees
1
.  

As expected, the mean of χ
2
/df is around 1.00 for both the ratio based 

on the test statistic of Andersen’s LR test and the S statistic. Moreover, 

this fit statistic does not depend on the sample size or test length. For 

example, the Andersen χ
2
/df with N = 100 and k = 10 items is 1.01, and 

with N = 1,000, and k=10 is 0.99. But χ
2
/df based on the S statistic very 

slightly changes with test length.    

Regarding the RMSEA, the mean value of this fit statistic based on 

the Andersen’s LR test and the S statistic is around zero as expected. 

However,  RMSEA  seems  to  be  somewhat  dependent  on sample size,  

 

 

FIGURE 1  Mean LR test χ
2
/df statistic for N = 100, 200, 300, 400, 500, 

600, 700, 800, 900, and 1,000 for k = 10, 20, 30, 40, and 50 items under 

the null hypothesis condition (left panel) and alternative hypothesis 

condition (right panel) with 8 DIF items  

                                                           
1
 A table which depicts the mean of all proposed statistics in the null 

hypothesis condition (when there is no DIF) for different sample sizes 

and test lengths can be obtained from the authors.  
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when sample size is lower than N = 400 in the case of k = 10 and lower 

than 300 in the case of k > 10. For instance, the Andersen’s RMSEA for 

N = 100 and k = 10 is 0.03, while this value drops to 0.01 for N = 400. 

These properties of the investigated fit statistics seem to hold for k > 10. 

The results of the null hypothesis condition with eight DIF items are 

shown in Figure 1. 

In sum, the results suggest that RMSD, SRMSD, and NRMSD are not 

suitable as fit statistics because they are highly dependent on sample size 

in the absence of DIF. For this reason, only χ
2
/df and RMSEA will be 

discussed in the alternative hypothesis condition.  

 

Alternative hypothesis condition  

In the alternative hypothesis conditions, results revealed that the 

higher the proportion of DIF items to the entire number of items, the 

higher the value of the fit statistics. That is, the magnitudes of the fit 

statistics depend on the number of investigated items. The more items 

investigated holding the number of DIF items constant, the lower the fit 

measure. In the following section, we will discuss the conditions with 

eight DIF items in more detail. 

The results revealed that χ
2
/df based on the LR test and the S statistic 

are both dependent on the sample size, while these statistics were found 

to be independent of sample size in the null hypothesis condition. Results 

showed that the RMSEA based on the LR test and the S statistic is not 

affected by sample size as long as the sample size is at least N = 200. For 

example, the mean χ
2
/df value based on the LR test for N = 100 and k=10 

with eight DIF items is 1.86, while this value increases to 9.45 when 

sample size is N = 1,000. On the other hand, the mean RMSEA value 

based on the LR test for N = 100 and k=10 is 0.08 and slightly increases 

to 0.09 when sample size is N = 1,000. 

In sum, the RMSEA based on the Andersen’s LR test and the S 

statistic are the only fit statistics that are not dependent on the sample 

size. Strictly speaking, RMSEA seems not to be reliable when n = 100, 

but with N ≥ 200 RMSEA only quantifies the magnitude of DIF without 

considering the sample size. However, this fit statistic is not very 

sensitive to misfit, as the values do not change noticeably between null 

and alternative hypotheses. The results of the alternative hypothesis 

condition with eight DIF items are depicted in Figure 2. 

Results showed that the value of χ
2
/df is a function of both the sample 

size and the ratio of DIF items to the entire number of items. When eight 

out of 10 items are DIF, i.e., 80% of the items, the value of χ
2
/df for a 

sample size of 100 is 1.86 and increases with sample size. However, the 

same value when eight out of 20 items are DIF, i.e., 40% of the items, is 

1.41 and increases with sample size. When eight out of 50 items are DIF, 
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i.e., 16% of the items, the value is 1.15 for a sample size of 100. 

Therefore, the interpretation of χ
2
/df depends on the amount of DIF we 

are ready to accept in the data. If we consider 100 as the smallest 

acceptable sample size for conducting Rasch model analysis and 0% as 

the smallest tolerable magnitude of DIF in the data we need χ2/df values  

 

 

FIGURE 2. Mean LR test RMSEA Statistic for N = 100, 200, 300, 400, 

500, 600, 700, 800, 900, and 1,000 for k = 10, 20, 30, 40, and 50 Items 

under the Null Hypothesis Condition (left panel) & Alternative 

Hypothesis Condition (right panel) with 8 DIF Items. 

 

 

a lot smaller than 1.15. Therefore, a maximum value of 1.03 (the largest 

value for χ
2
/df in the null hypothesis condition where there was no DIF) 

for this value should indicate perfect fit to the Racsh model. However, 

note that this value has different standard errors for different test lengths 

in the null hypothesis condition which allows for more generous cut-off 

values
2
.  

DISCUSSION 

In this study, an attempt was made to develop descriptive measures of 

fit for the dichotomous Rasch model. Accordingly, a number of fit 

statistics based on the property of parameter invariance of the Rasch 

model were evaluated in a simulation study. Furthermore, the simulation 

                                                           
2
 A table which depicts the mean of χ

2
/df and RMSEA for the Andersen’ 

LR test and the S statistic in the alternative hypothesis condition (with 

eight DIF items) for different sample sizes and test lengths can be 

obtained from the authors. 
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studies were carried out under the specific conditions of test length and 

sample size.  

Most of the available global model fit measures are based on 

statistical hypothesis testing. Such fit assessment procedures are sensitive 

to large sample sizes since statistical power increases. Furthermore, such 

methods evaluate perfect fit of the data to the Rasch model. In this study 

a descriptive method, namely, Andersen’s χ
2
/df, is suggested to evaluate 

the overall fit of data to the Rasch model. The proposed method in this 

study is not based on statistical null hypothesis testing and is independent 

of sample size. Based on simulation studies, cut-off values for the 

statistic for different test lengths are suggested. The statistic is a 

complement to the available fit statistics based on null hypothesis testing 

and not a replacement.         

Results showed that while all the fit statistics are more or less 

independent of test length in the null hypothesis condition, three of 

them—RMSD, SRMSD, and NRMSD—are dependent on sample size. 

The means of these statistics vary substantially across sample sizes, and 

therefore do not meet the requirements we specified above for efficient 

fit values. Meanwhile, the other four measures—Andersen χ
2
/df, S 

statistic χ
2
/df, Andersen RMSEA, and S statistic RMSEA—are 

independent of sample size in the null hypothesis condition. In this 

condition, the mean values for Andersen χ
2
/df and S statistic χ

2
/df are 

near one, and for Andersen RMSEA and S statistic RMSEA, they are 

near zero across all sample sizes. As a result, the S statistic χ
2
/df seems to 

be dependent on the test length to some degree, as the value for a test 

length of 10 is around 1.10 but the value approaches one as test length 

increases. However, the problem with Andersen RMSEA and S statistic 

RMSEA values is that these measures, although being robust against 

sample size and test length, are insensitive to model violations. In the H1 

condition, where the Rasch model does not hold, these values are around 

.10 (k=10) and .06 and .04 when k= 30 and k=40, respectively. This 

indicates that there is not much difference in these values in the H0 and 

H1 conditions, which limits their utility as indicators of model violation.  

Hence, the practical measure seems to be Andersen’s χ
2
/df as it is 

near one in the H0 condition across all sample sizes and test lengths and 

noticeably deviates from one in the H1 condition. The standard deviation 

of this measure, however, varies across different test lengths, which 

restricts building a single confidence interval for use in applied settings. 

Therefore, we need to devise different cut-off values depending on the 

test length. Using the mean standard errors across all sample sizes the 

one-sided 68% confidence intervals in Table 1 can be built as cut-off 

values for Andersen χ
2
/df for different test lengths.  
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The reason for building 68% confidence intervals instead of 95% was 

to lower the chances of false acceptance of the Rasch model based on the 

suggested fit measure. If Andersen χ
2
/df exceeds these values for 

different test lengths, the Rasch model should be rejected, whereas if it 

falls below these values, the Rasch model holds. For using this fit 

statistic no especial software is needed. If the Rasch model package 

computes Andersen’s LR test then the statistic can easily be computed by 

dividing the chi square value by its associated degrees of freedom.   

 

TABLE 1  Suggested Cut-off Values for Andersen’s χ
2
/df Value for 

                  Different Test Lengths 

k Andersen’s X2/df 

  

10 1.45 

20 1.32 

30 1.26 

40 1.23 

50 1.20 

k = number of items 

 

 

The fit statistic developed in this study should be sensitive to the 

violation of parallel item characteristic curves because if the 

discriminating powers of items are different, they would have 

substantially different difficulty estimates based on low and high scoring 

groups (Andersen, 1973).  

Future research should further investigate the cut-off values across 

other test lengths proposed in this study. It was established that the fit 

statistic specifically targets DIF and violation of parallel item response 

functions. Accordingly, future research should study its sensitivity 

against other types of model violation, such as multidimensionality and 

violation of conditional independence. A corollary of the test, with 

sensitivity to the unidimensionality assumption, can be developed based 

on the rationale of the suggested test here (Martin-Löf, 1973). This 

entails dividing the test into two subsets of easy and hard items, and 

estimating persons’ abilities from the two subsets. Then alternative fit 

indices in line with those developed in this study can be devised. Such a 

fit index provides information with respect to the violation of the 

unidimensionality assumption. If a test taps a single dimension, different 

subsets of items should yield equivalent ability parameters apart from 

random deviations. Lastly, the fit statistic developed in this study is 
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limited to dichotomous items and future research should focus on 

developing a similar measure for polytomous items.   
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