A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites - Station biologique de Roscoff Access content directly
Journal Articles Biogeosciences Year : 2024

A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites

Abstract

Deep-sea hydrothermal vent systems are under investigation for base and precious metal exploitations. The impact of mining will depend critically on the ability of larval dispersal to connect and replenish endemic populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of elemental fingerprinting of mollusk larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific Ocean. The gastropod Shinkailepas tollmanni represents a suitable candidate as it uses capsules to hold larvae before dispersal, which facilitates sampling and ensures mineralization occurs on the site of origin. Multielemental microchemistry was performed using cutting-edge femtosecond laser ablation inductively coupled plasma mass spectrometry analysis to obtain individual measurements on 600 encapsulated larval shells. We used classification methods to discriminate the origin of individuals from 14 hydrothermal sites spanning over 3500 km, with an overall success rate of 70 %. When considering fewer sites within more restricted areas, reflecting dispersal distances reported by genetic and modeling approaches, the success rate increased up to 86 %. We conclude that individual larval shells register site-specific elemental signatures that can be used to assess their origin. These results open new perspectives to get direct estimates on population connectivity from the geochemistry of pre-dispersal shells of recently settled juveniles.
Fichier principal
Vignette du fichier
Mouchi et al. 2024_Biogeosciences.pdf (4.02 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
licence : CC BY - Attribution

Dates and versions

hal-04494834 , version 1 (07-03-2024)

Licence

Attribution

Identifiers

Cite

Vincent Mouchi, Christophe Pécheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, et al.. A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites. Biogeosciences, 2024, 21 (1), pp.145-160. ⟨10.5194/bg-21-145-2024⟩. ⟨hal-04494834⟩
38 View
10 Download

Altmetric

Share

Gmail Facebook X LinkedIn More